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Abstract Biodegradable and bioresorbable polyesters
(BBPEs) are a widespread class of aliphatic polymers with a
plethora of applications in the medical field. Some reports
speculate that these polymers have intrinsic antibacterial
activity as a consequence of their acidic degradation by-
products. The release of organic acids as a result of the
hydrolytic degradation of BBPEs in vivo and the resulting
pH drop could be an effective inhibitor of the growth of
pathogens in the local environment adjacent to BBPE-based
devices. However, there is no clear and conclusive evidence
in the literature concerning the antibacterial activity of
BBPE to support or refute this hypothesis. In this commu-
nication we address this point through an assessment of the
antibacterial properties of six well-established commercially
available BBPEs. Agar diffusion assays and optical density
measurements at 600 nm were performed on all the polymer
samples to characterize the growth of bacteria and any
potential inhibition over an incubation period of 24 h. The
results indicated that BBPEs do not possess an intrinsic and
immediate antibacterial activity, which is consistent with
the clear mismatch between the time-scales for bacterial
growth and the rate of degradation of the polyesters.

Graphical abstract

1 Introduction

Biodegradable and bioresorbable polyesters (BBPEs) pos-
sess numerous beneficial properties (e.g., tailorable
mechanical properties, tunable degradation in contact with
biological fluids, high availability at competitive costs, and
drug carrying/delivering capability), which make them
suitable for numerous medical applications such as surgical
sutures, orthopedic clips, screws and staples, stents, tissue
engineering scaffolds, coatings, and drug delivery vehicles
[1, 2]. BBPEs degrade through a hydrolytic process to form
by-products, which are metabolized by the body through
physiological pathways [3, 4]. Since these by-products are
acidic (e.g., lactic acid), it has been proposed that the
degradation might result in a drop of the local pH below 4,
thus inhibiting the growth of pathogens [2, 5, 6]. However,
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the literature lacks evidence that pH gradient dependent
bacterial starvation actually happens in relation with the
degradation of BBPEs. The statement that pH related anti-
bacterial effects occur upon degradation of BBPEs is thus a
hypothesis without a solid empirical validation.

In this short communication we present the results of two
well-established protocols of bacterial inhibition assays
performed on an array of commercially available polyesters
(in film form) to assess the effect of the polymer degrada-
tion products on the growth of common strains of both
Gram-positive and Gram-negative bacteria.

2 Materials and methods

2.1 Preparation of the films

Films of six different commercially available BBPEs were
prepared by solvent casting. The polymers selected in this
study are summarized in Table 1.

All polymers were dissolved in 20 mL of dichlor-
omethane (DCM) at a fixed concentration of 5% w/v. The
solutions were then poured into glass petri dishes and left to
dry at room temperature for 48 h. After drying, disk shaped
samples (films of Ø= 12 mm and 0.2 mm thickness) were
cut from the as-cast film and then stored under vacuum to
remove any residual solvent.

2.2 Bacterial culture

2.2.1 Bacterial strains

Gram-positive Staphylococcus carnosus and Gram-negative
Escherichia coli were chosen as model bacterial strains for
the biological testing. Prior to the experiment, suspensions
of the selected strains in nutrient broth were prepared as
follows: a bacterial colony was suspended in 5 mL of
lysogeny broth (LB broth #968.1, Carl Roth GmbH) and
grown overnight in an orbital shaker at 37 °C. The obtained
suspension was diluted to adjust its optical density to reach
the value of 0.015 at OD 600 nm (Biophotometer Plus,
Eppendorf AG, Hamburg, Germany).

2.2.2 Halo tests

Antibacterial agar diffusion assays (halo tests) were carried
out according to a previously developed protocol [7].
Briefly, 20 µL of the prepared bacterial suspension was
deposited and spread homogeneously onto a petri dish of
10 cm diameter, which was previously covered with a uni-
form layer of fresh agar (LB Agar (Lennox), Lab M Ltd.).
The polyester samples were then placed onto the agar and
the culture was incubated for 24 h at 37 °C and high relative
humidity (~80%). After the incubation time, the inhibition
zone around each sample was assessed. High-resolution
images of the agar plates were taken with a digital camera
(Nikon D90).

2.2.3 Optical density

For turbidity measurements, samples of all types of polye-
ster were immersed in 5 mL of the prepared bacterial sus-
pension at an optical density of 0.015, measured with the
same Biophotometer Plus, as previously described, and
incubated in an orbital shaker at 37 °C. At given time-points
(1, 3, 6, and 24 h) aliquots of the bacterial suspensions were
withdrawn and the variations in optical density were
analyzed.

3 Results

3.1 Halo tests

After 24 h of incubation the polyesters showed no inhibition
area, either with Gram-positive or –negative bacteria. The
results of the halo tests were generally negative and bacteria
grew without any visible alteration around the samples (Fig.
1). Based on these simple results, it is safe to conclude that
the tested commercial polymers have no antimicrobial effect
on the selected strains. Furthermore, it is can be stated that
the absence of inhibition is due to the lack of change in pH
around the sample.

Table 1 Summary of the polymers used in this study

Sample Polymer (full name) Supplier Molecular weight

P1 Poly (D,L-Lactide-co-glycolide) (PLGA) Vornia Biomaterials, Ireland 5–15 kDa

P2 Poly (L-Lactide) (PLLA) Vornia Biomaterials, Ireland 300–400 kDa

P3 Polylactic acid (PLA) Goodfellow GmbH, Germany N/A

P4 Polyhydroxybutyrate (PHB) Goodfellow GmbH, Germany N/A

P5 Poly (ε-caprolactone) (PCL) Sigma-Aldrich, Germany 80 kDa

P6 Poly(D,L-Lactide) (PDLLA) Corbion Purac, Netherlands 80 kDa
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3.2 Optical density

Similar results were obtained also from turbidity measure-
ments, as shown in Fig. 2, confirming that all six polyesters

have no significant effect on the growth of bacteria sus-
pended in medium. All curves resemble a typical sequence
of bacterial growth [8] and are comparable (p< 0.05) to the
control. Measurements of the pH of the suspensions
revealed that no pH drop occurred. This can be a con-
sequence of both the buffer capability of the medium and
the lack of any consistent degradation of the materials
within the considered period of time.

4 Discussion

It is well known that most common pathogens can grow
effectively only within a pH window of 4 to 9 [9–12].
Moreover, organic acids have been proven to be an effective
inhibitor of bacterial growth since they interfere with the
normal functions of the bacterial membrane [11–13]. The
internal pH of bacteria must remain close to neutral even
when the external pH changes. Bacteria maintain home-
ostasis by means of ion pumps, however, if the shift from
neutrality is too large, H+ ions start to migrate into the
cytoplasm, acidifying it. This effect alters the ionization of
biomolecules, inhibits the activity of enzymes and trans-
membrane proteins and disrupts the plasma membrane [8].
These phenomena act concurrently, gradually blocking the
ability of correct cellular respiration of the microorganism.
From the cell growth point of view, the pH-dependent
bacterial inhibition will have an effect only at the level of
maximum population, with no influence on the lag phase or
the rate of growth [8].

Our results highlight that the mechanisms described
above cannot take place because of the existence of a fun-
damental time mismatch between the degradation-driven
pH drop and the growth of bacteria. While the former is a
relatively slow process, occurring over periods of weeks to
months, the latter happens within circa 1–2 days. As a

Fig. 1 Area of inhibition of tested polyesters against both Gram+ (Staph. carnosus) and Gram- (E. coli) bacteria after 24 h

Fig. 2 Turbidity measurements on suspensions of both tested strains in
LB medium. All curves follow the standard development of uncon-
ditioned bacteria growth for the different BBPEs investigated
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consequence, the inhibition of bacteria caused by low pH
described above cannot occur and the bacteria form a strong
and resilient colony long before the materials evaluated
herein start to degrade, negating de facto a possible pH-
dependent antimicrobial effect. A potential way to over-
come this discrepancy would be to have a fast degrading
polymer that is able to acidify the pH of the biological
environment within a few hours. However, in this case,
there could be an increased risk of inflammation of the
surrounding tissues. Indeed, previous reports on PLA-based
orthopedic implants identify the local pH drop as one of the
main causes of chronic inflammation and, eventually, of
failure [14, 15]. These facts highlight the need to char-
acterize in-depth the interaction between bacteria and
degrading BBPEs to confirm whether the hypothesized
antimicrobial activity of these polymers can be a promising
strategy in fighting bacteria, which could see an expansion
of the scope of medical applications of BBPEs.

5 Conclusions

In order to test the hypothesis, often found in literature, that
biodegradable bioresorbable polyesters can have a pH-
dependent antimicrobial effect, an array of six commercially
available BBPEs have been biologically characterized. Two
well-established assays were performed on test strains of
both Gram-positive and Gram-negative bacteria. No pH-
dependent antimicrobial effect of any analyzed polyester (in
film form) was detected. Since there is a strong rate dif-
ference between the fast growth of bacteria and the rela-
tively slow degradation of the polymers, no inhibition can
occur. Therefore, our results disprove that BBPEs are
intrinsically antimicrobial.
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